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1. INTRODUCTION AND THE THEOREM

Landau's problem concerning inequalities between derivatives on the
whole real line or on the half real line has been discussed in the general
settings by many authors; see, e.g., Kolmogorov [4], Cavaretta [I] and
Schoenberg and Cavaretta [7J. On the other hand, in 1975, Chui and Smith
[2] treated Landau's problem for bounded intervals with III" II finite, and
recently Pinkus [5] studied a pointwise version of Landau's problem for
bounded intervals. (For a simple proof of the Chui-Smith theorem we refer
the reader to [6J.) In this paper we intend to discuss the problem for
bounded intervals with IIjl3) II finite. It will be seen that Karlin's conjecture
[3, p. 423 J, which asserts that a Zolotarev spline is extremal with respect to
any derivative, is true for the third derivative (it is also true for the second).

To formulate our result, let I be a real function on the unit interval
1= [0, 1J such that I" is absolutely continuous on I; thus jl3)(t) exists for
almost all tEl with respect to Lebesgue measure, and

I"(x) - 1"(0) = ( 1(3)(t) dt for all x E I.

Put 11/111 = ess SUPtel If(t)/. Then the result can be formulated as follows:

THEOREM. Let Ilflll ~ I and Ilf(3) III ~ A. Then

and

159

4 2A
II!" III ~ a2 +-3- a (1)
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if 0 ~A < 81, where a is defined by the relations

and

11f' III ~ ~ if and III"III~ 6 (1~ f (2)

if A ~ 81. Moreover these inequalities are best possible.

2. PROOF OF THE THEOREM

First of all we shall construct an extremizing function 10 on I. To do this,
let a be the constant introduced in the theorem if 0 ~ A < 81, and put

if A ~ 81.

We shall first consider the case A > O. Let a >0 be fixed arbitrarily, and
put

A
h(t) = 6 (t + a) t(t - a)

Then, immediately,

for all t ~ a/V3.

A
h'(t) = 2 (t +a/V3)(t - a/V3).

h"(t) = At and

Hence, in particular, h'(a//3) = 0, and thus it may be readily seen that
there exists a unique extension g of h to the right such that g" is absolutely
continuous on [a/ /3, 00) and also such that

and

Ig(t)1 ~ -h(a/V3) for all t ~ a/V3

for almost all t ~ a/V3.
More explicitly, g can be defined by

get) = h(t)

= h(2a/V3 - t)

= get - 4a/V3)

for t ~ a/V3

for a/V3 < t ~ V3 a

for t> V3 a.
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On the other hand, since the function h satisfies

h(-2a/V3) = h(a/V3) = -Aa3/9 V3,
we see that if a> 0 is such that Aa3/9 J3 = 1, then

for all t ~ -2a/V3.Ig(t)1 ~ 1and~= ;fl;
Thus, if A ~ 81 then, recalling that a = ij(3/A) ~ 1/3, an extremizing
function 10 can be defined by

lo(t) = get - 2a) for all tEl.

If 0 <A < 81 then a/V3 = ij(3/A) > 1/3; and in this case, the above
examination shows that an extremizing function/o can be defined by solving
the simultaneous equations:

A
lo(t) = 6 t 3 +Bt2 + Ct - 1, 10(1) = -1,

lo(a) = 1, n(a) = 0 and 1/3 <a ~ 1/2.

The answer is as follows:

A 3 (2 A ) 2 (4 A 2)J;(t)=-t - -+-a t + -+-a t-l
o 6 a 2 3 a 6

on I,

where a is such that

It is easily seen that this function is also an extremizing function for the
case A = O. (Here the author would like to remark that she learned from one
of the referees that the above polynomial function is simply the associated
Zolotarev polynomial. Also, she would like to remark that the quartic
equation defining a, when 0 ~ A < 81, can be explicitly solved, but the
explicit formula is not given here, because the formula is neither simple nor
essential. )

Next we shall verify some properties of 10 needed in the proof of the
theorem. Before doing so, we shall set

p= min{3a, I} and P* =P + 2ka,

where k ~ 0 is an integer such that p+ 2ka ~ 1 <p+ 2(k + 1)a. Then 10
satisfies the following properties:

640(34(2-5
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(a) 1I.foIl/=fo(a) = l,fo(O)=.fo(II)=-1 and If(II*)I= 1.

(b) If 0 ~ A < 81, then

4 A 4 2A
Ilnlll=n(0)=~+6a2 and Ilf~II/=-f~(O)=a2 +-3- a.

(c) If A ~ 81, then

Ilnll/=n(O)= ~ 1+ and

(d) f~(t) =At -llf~ll/ on [0,111, andf;(a) < O.

In fact, (a) is immediate from the definition of fo. If A ~ 81 then, since
a 3 = 3/A and

on [0,111,

we have that

and that

on [0,111

f~(t)=At-6 (1+f on [0,111.

Therefore, from the definition of fo' (c) follows at once. Further we have

f;(a) <f~(2a) = 0,

which proves (d) when A ~ 81. If 0 ~A <81, then immediately

A 2 (4 2A) (4 A 2)f'(t)=-t - -+-a t+ -+-a
o 2 a 2 3 a 6

and

f "(t)=At- (~+ 2A a) on Io a 2 3 .

Thus (b) follows, similarly. Further we have

f;(a)";; j;(2a) < 0,

on I
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because/~(2a) <0, as easily seen from the definition of10' This proves (d)
when °~A < 81, and the proof of (d) is completed.

Now we shall show below that if III1II ~ 1 and Ilp3) III ~ A then III' III ~
lin III and Ilf" III ~ Ilf; III' Since the argument is somewhat long, we divide it
into several steps.

Step I. If II fill ~ 1, Ilf(3) III ~ A and 111'111 = Ilf~ 111' then f is essentially
unique on [0, fJ* J; more precisely,

f(t) = ±fo(t) or f(1 - t) = ±fo(t) for all t E [O,fJ*J.

To see this, choose to E [0, 1J such that II'(to)1 = 111'111' Here we may
assume without loss of generality that

and l'(to)=llf'II/'

Suppose to *" 0. Then we have I" (to) = 0, because I" is continuous and

f
lo°~ I'(to) - I'(t) = I f"(s) ds

Since Ilf(3) III ~ A, we then have by (d) that

for all °~ t ~ 1.

and hence that

I"(to + s) > f;(a - s) for all s E [0, a J,

I I I

So f"(to + s) ds > So f;(a - s) ds ~t f;(s) ds

for all t E (0, a J.
Therefore

I

I'(to + t) - n(t) = t [/"(to + s) - f;(s)J ds >°
for all t E (0, a J, because I'(to) = 111'111 = lin III = n(O) by hypothesis. But
this implies

f(to +a) - f(to) = So" I'(to + t) dt >( n(t) dt

= fo(a) - 10(0) = 2,

which is a contradiction because II fill ~ 1. Hence we conclude that to = 0,
Le., 1'(0) = lin III (=fMO».
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Suppose f"(O) < f;(O). Then, since Ilp3) III ~ A, we may again apply (d)
to infer that f"(t) < f;(t) for all t E [0, Pl. So we obtain

t t

f'(t) = f'(0) +f
o

f"(s) ds <nCO) +t f;(s) ds = net)

for all t E (0, Pl, and consequently

./3 f/3
f(P) - f(a) = J f'(t) dt < net) dt

'" '"
= fciP) - fcia) = -2.

But this is a contradiction.
Suppose f"(O) > f;(O). Then, since f(O) ~ -1 = fo(O), f'(O) = f~(O) and

fo(a) = 1, we can choose p E (0, a l such that

f(p) = fo(p) and f(t) > fo(l) on (0, p).

Then it follows thatf'(q) <n(q) for some 0 < q < p. From this and the fact
that f' (0) = nCO), we observe that f"(r) < f;(r) for some 0 < r <q. Since
IIf(3) III ~ A, we have by (d) that

Hence

f"(t) < f;(t) on [r,Pl.

t t

f'(t) = f'(q) +f f"(s) ds <n(q) +f f;(s) ds = net)
q q

for all t E [q, Pl, which implies f(P) - f(a) < fo(P) - fo(a) = -2, a con­
tradiction.

Suppose f"(O) = f;(O). Then f"(t) ~ f;(t) on [0, Pl, and hence f'(t) ~
net) on [0, Pl because f'(0) = nCO). It follows that f(t) ~ fo(t) on [a, Pl,
f(P) = -I and f(a) = 1. Therefore f'(t) = net) on [a, Pl, and consequently
f(t) = fo(t) on [a, Pl. By a similar argument we see that f(t) = fo(t) on
[0, a l, and further that f(t) = fo(t) on [0, p*].

Step II. If Ilflll ~ 1 and IIf(3) III ~ A, then 11f' III ~ lin III"
In fact, if we should assume the contrary: e Ilf' III = Ilf~ III for some

o<e < 1, then, since II iflll ~ 1 and II if (3) III ~ A, we should have by Step I
that II eflll ~ lifo III = 1, or equivalently that Ilflll ~ lie> 1. But this is a
contradiction because Ilflll ~ 1 by hypothesis.

Step III. If Ilflll ~ 1, Ilf(3) III ~ A and Ilf"lll = IIf;II/' then 11f' III = Ilnll/'
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To see this, choose to E I such that 11/"111 = 1/"(to)l. Here we may assume
without loss of generality that

and f"Cto) = -llf"II/'

First suppose 0 ~ to <a. Since 11/(3) III ~ A, we then have by (d) that

I"(t) ~ f;(t o- t)

and that

f"(t) ~ f;(t)

It follows that for all t E [a, PI

for all t E [0, toJ

for all t E [to, Pl.

I I

I'(t) - f'(O) = Lf"(s) ds ~Lf;(s) ds = net) - nCO).

Therefore, ifl'(O) <nCO), then we havel'(t) < f~(t) for all tE [a,p); con­
sequently

3 3
f(P) - f(a) =f I'(t) dt <f IMt) dt

a a

= f O(3) - foCal = -2,

which is a contradiction. Thus it follows that 1'(0) ~ nCO) = IInll/' Hence,
by Step II, 111'11/ = 1I/~1I/'

Next suppose a ~ to ~ 1. By a similar argument we have that for every
t E (0, a)

flo fl
I'(to) - I'(to - t) = f"(s) ds ~ f;(s) ds

10-1 0

<(-I f;(s) ds = I~(a) - f~(a - t).

Since (a) implies f~(a) = 0, it follows that I' (to - t) >I' (to) + f~(a - t) on
(0, a). Thus if f'(to) ~ 0 then it follows thatf'(to - t) >n(a - t) on (0, a),
and hence we get

f(to) - f(to - a) = r I'(to - t) dt > r
a

n(a - t) dt = 2,
o )0
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which is a contradiction. On the other hand, if f'(to) <0 then we have, for
every t E [0, a I,

f
lO+1

f'(to + t) = f'(to) + I"Cs) ds
10

< fa I~Cs) ds = -nCa - t).
a-I

Therefore

l(to +a) - l(to) = ( f'(to + t) dt

« -nCa-t)dt=-2,

which is a contradiction, too.

Step IV. If 11/111 ~ I and Ilf3
) III ~ A, then III" III ~ II/~ Ill'

This is now an immediate consequence, and the proof of the theorem is
completed.
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